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Overview

f : Rn → C integrable

Integral transforms

F [f ] : Rn → CFourier

ϕ : Rn → Z constructible EF [ϕ] : Rn → C
Hybrid Fourier

records spectral info.

records topological info.

talk: about integral transforms
all know: Fourier transform 
specificity: brings spectral information to the forefront
introduce: Hybrid Fourier transform 
specifity: bring topological information to the forefront

what topology? 
Constructible fns encapsulate topo information in their strata -> will be clear in the next slide



Overview

Outcomes of hybrid transforms

f : Rn → C integrable

Integral transforms

F [f ] : Rn → CFourier

ϕ : Rn → Z constructible EF [ϕ] : Rn → C
Hybrid Fourier

records spectral info.

records topological info.

I Efficiently computable

I Informative

I Generalize existing invariants Persistent magnitude [8],

Euler characteristic of barcodes [9])

(e.g.

I Well-behaved (invariance, regularity, mean formulae)

[9] Bobrowski, Borman (2012) Euler integration of Gaussian random fields and persistent homology. Journal of Topology and Analysis, 4(01), 49-70.

[8] Govc, Hepworth (2021) Persistent magnitude. Journal of Pure and Applied Algebra, 225(3), 106517.

I Adapted to statistical tools

talk: about integral transforms
all know: Fourier transform 
specificity: brings spectral information to the forefront
introduce: Hybrid Fourier transform 
specifity: bring topological information to the forefront

what topology? 
Constructible fns encapsulate topo information in their strata -> will be clear in the next slide
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mi1Ki

Def.

mi ∈ Zwhere

Ki compact

subanalytic in Rn
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Why constructible functions ?

Should I give more details on 2(i) ? what it gives for an f ?

1. Theoretically: geometric objects of the same nature as characteristic cycles, algebraic cycles, i.e. cohomological objects at the heart of important computations in algebraic geometry (such as Grothendieck-Riemann-Roch thm).
We'll see one operation: pushforward, but there are a lot of them.

2. 
(i) invariant when no canonical invariant exists, fundamentally no good choice and this one is actually faster to compute than all other invariants.
+ used in prediction of clinical outcomes

(ii)This topological integration gives constructible functions all their flavour. Operations, integral transforms, etc are defined via this Euler integration.

(iii) EC of all intersections with affine hyperplanes characterizes the shape 
-> while EC seems rough summary, enough EC is fully determining a shape...

3. A bit naive, but ubiquitous. Question is more, when is it relevant to consider data as a constructible function? -> as soon as the topology of weighted strata matters.

Note: EC classifies closed connected orientable surfaces



Why constructible functions ?

1. Theoretically rich

Group of
characteristic
cycles of Rn

'CF(Rn) '

Grothendieck
group of the
category of

constructible
sheaves on Rn

operations operations

[5]

[5] Kashiwara, Schapira (1990) Sheaves on Manifolds (Vol. 292). Springer Science &
Business Media.
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2. Useful in applied topology

(i) Persistence

invariant of pers. mod.

graded pers. mod. on Rn
M =

⊕
j∈ZMj 7−→ ϕM : x ∈ Rn 7→

∑
j∈Z
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invariant of pers. mod.

ϕf :
R→ Z
t 7→ χ

(
{x ∈ X ; f(x) ≤ t}

) ∈ CF(R)

Ex. (n = 1) For f : X → R continuous subanalytic,

graded pers. mod. on Rn
M =

⊕
j∈ZMj 7−→ ϕM : x ∈ Rn 7→

∑
j∈Z

(−1)j dimMj(x)

M =
⊕
j∈Z

PHj(X, f)Here

pers. mod. on Rn
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Why constructible functions ?

1. Theoretically rich

2. Useful in applied topology

(i) Persistence

invariant of pers. mod.

ϕf :
R→ Z
t 7→ χ

(
{x ∈ X ; f(x) ≤ t}

) ∈ CF(R)

Euler characteristic

χ(K) =
∑
j∈Z

(−1)j dimHj(K;Q)

χ(K) =
∑
j∈Z

(−1)j#{j-simplices}

= 1 if K compact convexχ(K)

if K simp.
cplx

Ex. (n = 1) For f : X → R continuous subanalytic,

Def.

graded pers. mod. on Rn
M =

⊕
j∈ZMj 7−→ ϕM : x ∈ Rn 7→

∑
j∈Z

(−1)j dimMj(x)

compact subanalytic

pers. mod. on Rn
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ξ
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curves for all height functions ?

Que.
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ξ

ϕξ : t 7→ χ(F ∩ {ξ ≤ t})

[1] Crawford, Monod, Chen, Mukherjee, Rabadán (2020)
Predicting Clinical Outcomes in Glioblastoma : An
Application of Topological and Functional Data Analysis,
Journal of the American Statistical Association, 115 :531,
1139-1150

Prediction of
clinical outcomes
in brain tumors

Ex. [1]
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Why constructible functions ?

1. Theoretically rich

2. Useful in applied topology

(i) Persistence

(ii) Euler characteristic transform

3. Ubiquitous in computer science (implementable by nature)

e.g. (weighted) simplicial complex

3

12

3

1

−2

1

1

1

1

1

2

−1

[13] Meng, Anand, Lu, Wu, Xia (2020) Weighted persistent
homology for biomolecular data analysis. Scientific reports,
10(1), 1-15.

Biomolecular data analysisEx. [13]
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An operation : the pushforward
Consider ξ : Rn → R

Ex. ϕ = 1K ∈ CF
(
R2
)

K

χ(ξ−1(t) ∩K) =

1

2

3

ξ∗1K(t)

R

Def.

ξ∗1K :
R −→ Z

t 7−→ χ
(
ξ−1(t) ∩K

)
(Pushforward)

∈ CF(R)

K compact subanalytic (General case)

ϕ =
∑
mi · 1Ki

,For

ξ∗ϕ :=
∑
mi · ξ∗1Ki

∈ CF(R)

linear.

“topological scan”

ξ−1(t)

1

t

Topological dimensionality reduction from n to 1Rk. ξ∗ : CF(Rn)→ CF(R)

Fundamental operation: pushforward



Constructible world

[6] Curry, Ghrist, Robinson (2012) Euler calculus with applications to signals and sensing. Proceedings of Symposia in Applied
Mathematics. Vol. 70.

[6]

Wonderous world of constructible functions: topological operations, transforms, implementable by design.

But: even if constructible functions are in L^p for any p, the topological information they carry is not accessible with usual statistical tools (e.g. tools using L^p norms) since Lebesgue measure is blind to topology.

Integral transform=Collection of topological scans, not easily representable 
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Pros Cons :

- Topological operations
(pushforward, transforms)

- Implementable

- Topology not accessible with usual
stats tools (Lp norms, ...)

- Topological scans do not give access
to full scope of functional stats

not the best world for stats

[1] Crawford, Monod, Chen, Mukherjee, Rabadán (2020) Predicting Clinical Outcomes in Glioblastoma : An Application of Topological
and Functional Data Analysis, Journal of the American Statistical Association, 115 :531, 1139-1150
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Constructible world
Pros Cons :

- Topological operations
(pushforward, transforms)

- Implementable

- Topology not accessible with usual
stats tools (Lp norms, ...)

- Topological scans do not give access
to full scope of functional stats

Idea. Get out of the constructible world.

CF(Rn) −→ L2(Rn) (Hilbert space)

Hybrid transforms

not the best world for stats

[1] Crawford, Monod, Chen, Mukherjee, Rabadán (2020) Predicting Clinical Outcomes in Glioblastoma : An Application of Topological
and Functional Data Analysis, Journal of the American Statistical Association, 115 :531, 1139-1150
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Getting out of the constructible world

Def. (Hybrid transform) κ : R→ C in L1
loc and ϕ ∈ CF(Rn)

∫
R
κ(t)ξ∗ϕ(t) dt

Rn −→ C

ξ 7−→
Tκ[ϕ] :
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Getting out of the constructible world

Def. (Hybrid transform) κ : R→ C in L1
loc and ϕ ∈ CF(Rn)

∫
R
κ(t)ξ∗ϕ(t) dt

Rn −→ C

ξ 7−→
Tκ[ϕ] :

Ex. Euler-Fourier

∫
R
e−itξ∗ϕ(t) dt

Rn −→ C

ξ 7−→
EF [ϕ] :

Ex. Euler-Laplace

∫
R
e−tξ∗ϕ(t) dt

Rn −→ R

ξ 7−→
EL[ϕ] :

topological dim. reduction

integration against kernel

[3] Ghrist, Robinson (2011) Euler–Bessel and Euler–Fourier transforms. Inverse problems,
27(12), 124006.

First appear in [3]
(without kernel κ)

1

2

3

ξ∗ϕ

R

Multi-parameter
persistent magnitude
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Centered hence symmetric



Toy example : square

1S ∈ CF
(
R2

)
EF [1S ] : R2 → C

S

ξ
EF [1S ](ξ)

=

∫
R
e−itξ∗1S(t) dt

Centered hence symmetric



Toy example : square

1S ∈ CF
(
R2

)
EF [1S ] : R2 → C

S

Centered hence symmetric



Toy example : square minus a crack

1S − 1C ∈ CF
(
R2

)
EF [1S − 1C ] : R2 → C

S

Compare how the difference in topology spreads out in the transformed world and is now accessible to usual tool s using Lebesgue measure such as L^p norms
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-> combined with Rips yield fine invariant of point clouds

Put figure ?
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M =
⊕
j∈Z

Mj

t 7→
∑
j,k

(−1)j
(
e−ta

j
k − e−tb

j
k

)
Mj '

⊕
k

k
[a

j
k
,b

j
k
)

|M | :
R>0 → R

Graded pers. mod. over R Persistent magnitude function

(finitely presented)

Main property : additivity

If 0→M → N → P → 0 s.e.s., then |N | = |M | + |P |.

Csq. |PH(X, f)|(t) =
∑

p∈Crit(f)

(−1)µ(p)e−tf(p)

-> combined with Rips yield fine invariant of point clouds

Put figure ?
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M =
⊕
j∈Z

Mj

ϕM : t 7→
∑
j∈Z(−1)

j dimMj(t) =
∑
j,k(−1)

j1
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∑
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(−1)j
(
e−ta

j
k − e−tb

j
k

)
Mj '

⊕
k

k
[a

j
k
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j
k
)

|M | :
R>0 → R

Graded pers. mod. over R Persistent magnitude function

(finitely presented)

Constructible function over R

=

∫
R
e−st∗ϕM (s)ds

ϕM (s/t)

-> combined with Rips yield fine invariant of point clouds

Put figure ?
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[14]

M =
⊕
j∈Z

Mj
|M | :

R>0 → R

Graded pers. mod. over R Persistent magnitude function
n

n

ϕM : x 7→
∑
j∈Z(−1)

j dimMj(x)

Constructible function over R

ξ 7→
∫
R
e−sξ∗ϕM (s) ds

constructible, compactly supported

n

= EL[ϕM ]

-> combined with Rips yield fine invariant of point clouds

Put figure ?



Persistent magnitude

[14] Govc, Hepworth (2021) Persistent magnitude. Journal of Pure and Applied Algebra, 225(3), 106517.

[14]

M =
⊕
j∈Z

Mj
|M | :

R>0 → R

Graded pers. mod. over R Persistent magnitude function
n

n

ϕM : x 7→
∑
j∈Z(−1)

j dimMj(x)

Constructible function over R

ξ 7→
∫
R
e−sξ∗ϕM (s) ds

constructible, compactly supported

n

Properties

Additivity

Formula with homological critical values for PH(X, f)

Compatibility with constructible operations (convolution, pushforward, ...)

= EL[ϕM ]

-> combined with Rips yield fine invariant of point clouds

Put figure ?



Toy example : persistence

X1 = U(S1) + 0.2 · U([−1, 1]2) ϕi : t 7→ χ (Ripst(Xi))Mi =
⊕
j∈Z

Hj(Rips(Xi))

An example of point clouds Persistent magnitude of 50 draws

X2 = U(S1) +N (0, 0.1 · Id)
7→ 7→

EL[ϕi] : t 7→
∫
R
e−sϕi(s/t)ds

(with O. Hacquard)



Toy example : persistence

X1 = U(S1) + 0.2 · U([−1, 1]2) ϕi : t 7→ χ (Ripst(Xi))Mi =
⊕
j∈Z

Hj(Rips(Xi))

An example of point clouds

X2 = U(S1) +N (0, 0.1 · Id)

Tcos[ϕi] : t 7→
∫
R
cos(s)ϕi(s/t)ds

7→ 7→

Hybrid Cosine transform of 50 draws

(with O. Hacquard)



Properties

1. Regularity

EF : CFPL(Rn) −→ C0
b,ps(Rn,C)

2. Invariance

x0 ∈ Rn, τx0∗ϕ(x) := ϕ(x− x0)

∀ξ ∈ Rn, EF [τx0∗ϕ](ξ) = e−i〈ξ;x0〉EF [ϕ](ξ)

denoteTranslation

Linear transformation A ∈ GLn(R), A∗ϕ(x) := ϕ(A−1x)denote

∀ξ ∈ Rn, EF [A∗ϕ](ξ) = EF [ϕ] (tAξ)

3. Left inverse

One can recover ϕ from EF [ϕ]. (under some assumptions ⊃ persistence)

many others for other operations (e.g. constructible convolution)...

continuous
piecewise smooth
bounded



Summary

Hybrid transforms : Constructible world −→ Usual functional spaces

EF : CFPL(Rn) −→ C0
b,ps(Rn,C)

topological information

e.g.

Regularity

Invariance (compatibility with operations)

Computability

Properties

Invariant of multi-parameter persistent modules M 7→ ϕM 7→ Tκ[ϕM ]
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Stability
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Summary

Hybrid transforms : Constructible world −→ Usual functional spaces

EF : CFPL(Rn) −→ C0
b,ps(Rn,C)

topological information

e.g.

Regularity

Invariance (compatibility with operations)

Computability

Thank you !

Properties

Future work

Interpretability (with O. Hacquard)

Stability

Invariant of multi-parameter persistent modules M 7→ ϕM 7→ Tκ[ϕM ]
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