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Abstract
We present an integral transform of constructible functions, the Euler-Fourier transform, combining
Lebesgue integration and constructible pushforward — a topological dimensionality reduction.
Lebesgue integration gives access to regularity results while constructible pushforward conveys
topological information, making it strictly more discriminating than the classical Fourier transform.
This transform is an example of the more general notion of hybrid transform defined in [8]. In this
note, we adapt the exposition to this specific example and illustrate it in various ways. We also
show that it can be efficiently computed in practical scenarios.

2012 ACM Subject Classification Mathematics of computing → Algebraic topology

Keywords and phrases topological data analysis, Euler calculus, constructible functions, integral
transforms

Related Version A full version of the paper is available at https://arxiv.org/abs/2111.07829.

1 Introduction

Euler calculus – the integral calculus of constructible functions with respect to the Euler
characteristic – is of increasing interest in topological data analysis and computational
geometry. Already in [9], it was developed as an alternative definition of convolution for
polygonal tracings with multiplicities, a useful notion in robotics [5, 7]. In persistence
theory, Schapira’s result on Radon transform [11] positively answers an important question [2,
Thm. 4.11]: are two constructible subsets of Rn with the same persistent homology in all
degrees and for all height filtrations equal? More generally, the constructible functions
naturally associated to multiparameter persistent modules stand as simple and well-behaved,
albeit incomplete, invariants of these objects. For instance, the persistent magnitude [4] is
actually defined on the constructible functions associated to the persistence modules.

In [8], we introduced a general definition and conducted a systematic study of integral
transforms combining Lebesgue integration and Euler calculus for constructible functions.
Such transforms generalize the Bessel and Fourier transforms of Ghrist and Robinson [3],
as well as the Euler characteristic of barcodes of Bobrowski and Borman [1]. In this note,
we illustrate the theory on one example, the Euler-Fourier transform. We state some of its
characteristics and illustrate its differences from its classical analogue in various situations
(see Figure 1). More general results are proven in [8].

2 Definition

A function ϕ : Rn → Z is called constructible1 if it can be written as a finite sum ϕ =∑r
i=1 mi1Ki

, where the mi’s are integers and the Ki’s are compact subanalytic subsets of Rn.
We denote by CF(Rn) the group of constructible functions on Rn. We refer to [6, Sec. 8.2,
Sec. 9.7] for more details on subanalytic sets and constructible functions.

This is an abstract of a presentation given at CG:YRF 2022. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.

1 In this note, we consider only compactly supported constructible functions.
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Figure 1 Left: a piecewise-linear closed curve C in R2. Right: Euler-Fourier transform of 1C .

I Example 2.1. Any polytope of Rn — the convex hull of a finite set of points of Rn —
is subanalytic. If the subsets Ki in the decomposition of ϕ are polytopes, then ϕ is said
PL-constructible. We denote by CFPL(Rn) the group of PL-constructible functions on Rn.

I Definition 2.2. Let ξ ∈ Rn and ϕ =
∑r
i=1 mi1Ki

be a constructible function. The
pushforward of ϕ along ξ is the constructible function ξ∗ϕ over R defined for any t ∈ R by

ξ∗ϕ(t) =
r∑
i=1

mi · χ
(
ξ−1(t) ∩Ki

)
,

where2 ξ−1(t) = {x ∈ Rn ; 〈ξ;x〉 = t} and χ is the Euler characteristic, that is χ (Z) =∑
j∈Z(−1)j dimQH

j(Z;Q) for any Z ⊆ Rn compact and subanalytic. See Figure 2.

The fact that this definition does not depend on the decomposition of ϕ and that ξ∗ϕ is a
constructible function on R is proven by Schapira [9, 10].

I Example 2.3. If P ⊆ Rn is a polytope, then ξ∗1P = 1[minP (ξ),maxP (ξ)], where minP (ξ) =
min{〈ξ;x〉 ; x ∈ P} and maxP (ξ) = max{〈ξ;x〉 ; x ∈ P}. In fact, there is a vertex p (resp. q)
of P , depending on ξ, such that minP (ξ) = 〈ξ; p〉 (resp. maxP (ξ) = 〈ξ; q〉).
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Figure 2 The pushforward along ξ ∈ R2 of 1K for the compact subanalytic K ⊆ R2.

2 For any two x, y ∈ Rn, we denote by 〈x; y〉 their canonical scalar product.
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Figure 3 The pushforward along ξ ∈ R2 of ϕ = 1P for the polytope P ⊆ R2.

I Definition 2.4. The Euler-Fourier transform of ϕ ∈ CF(Rn) is defined for ξ ∈ Rn by:

EF [ϕ] (ξ) =
∫
R
e−itξ∗ϕ(t) dt.

Choosing any kernel κ ∈ L1
loc(R) instead of t 7→ e−it leads to the general definition of hybrid

transform, studied in [8]. We now turn to examples. The reader’s attention is drawn to the
effect of the successive application of topological pushforward and of classical integral.

I Example 2.5. Denote by Sr the sphere of radius r > 0 in Rn. For any ξ ∈ Rn,

EF [1Sr
] (ξ) = 2 · (1 + (−1)n) · sin (r‖ξ‖) .

I Example 2.6. Consider the constructible function ϕ = 1S − 1C , where S = [−1/2, 1/2]2
and C is the piecewise linear closed curve of R2 represented by the dotted line in Figure 4b.
Since C has zero volume, the (classical) Fourier transforms of 1S and of 1S − 1C are equal.
However, their Euler-Fourier transforms differ, as shown in Figure 4.

3 Properties

The Euler-Fourier transform enjoys a regularity result on PL-constructible functions.

I Proposition 3.1. Let ϕ ∈ CFPL(Rn). The function EF [ϕ] is continuous, bounded and
piecewise smooth on Rn.

The Euler-Fourier transform enjoys several invariance properties. We emphasize here
specific ones which are also satisfied by the classical Fourier transform.

I Proposition 3.2. Let ϕ ∈ CF(Rn) and A ∈ GLn(R). Denote by A∗ϕ the constructible
function on Rn given by A∗ϕ(x) = ϕ(A−1x), for any x ∈ Rn. For any ξ ∈ Rn, we have:

EF [A∗ϕ] (ξ) = EF [ϕ]
(
tAξ
)
.

I Proposition 3.3. Let ϕ ∈ CF(Rn) and x0 ∈ Rn. Denote by τx0∗ϕ the constructible function
on Rn given by τx0∗ϕ(x) = ϕ(x− x0), for any x ∈ Rn. For any ξ ∈ Rn, we have:

EF [τx0∗ϕ] (ξ) = e−i〈ξ;x0〉 · EF [ϕ] (ξ).

These operations are not the only operations available on constructible functions. In [8], we
study the compatibility of hybrid transforms with numerous operations.
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(a) 1S (b) 1S − 1C

(c) EF [1S ] (d) EF [1S − 1C ]

Figure 4 Euler-Fourier transforms of the constructible functions 1S and 1S −1C in Example 2.6.

4 Computations

Let ϕ ∈ CFPL(Rn) be written as ϕ =
∑r
l=1 ml · 1Pl

where the subsets Pl are polytopes.
By Z-linearity of EF and Example 2.3, we have for any ξ ∈ Rn,

EF [ϕ] (ξ) =
r∑
l=1

ml

∫ maxPl
(ξ)

minPl
(ξ)

e−it dt = i

r∑
l=1

ml

(
e−imaxPl

(ξ) − e−iminPl
(ξ)
)
. (4.1)

The extrema minPl
(ξ) and maxPl

(ξ) being attained on vertices of Pl, computing the extrema
of 〈ξ; vl〉 for vl ranging over the set of vertices of Pl yields the value of EF [ϕ] (ξ) using (4.1).

Consider now a fixed finite collection of polytopes P = {Pl}rl=1 and denote by CFP(Rn)
the set of ϕ ∈ CF(Rn) that can be written as ϕ =

∑r
l=1 ml · 1Pl

. Precomputing the
extrema of ξ on the set of vertices of each polytope of P , the Euler-Fourier transform of any
ϕ ∈ CFP(Rn) is easily computed using (4.1). As an important example, greyscale images of
size n×m can naturally be seen as constructible functions on a fixed cubical complex of R2.
Each value of their transforms can thus be computed in O(nm) operations.
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