Euler-Fourier transform

Vadim Lebovici

universite

PARIS-SACLAY

arXiv:2111.07829

PhD supervised by Steve Oudot (INRIA) & François Petit (Université de Paris) YRF Session 3B n°5 - 22/02/15

Introduction

Introduction

Topological integral

transforms

Shapes

S

e.g. Radon transform [1], Euler characteristic transform [2,3,4]

Descriptors

- topological meaning
- interpretable
- well-suited to statistics
- complete

[12] Amézquita, Quigley, Ophelders, Landis, Koenig, Munch, Chitwood (2022) *Measuring hidden phenotype : Quantifying the shape of barley seeds using the Euler Characteristic Transform*. in silico Plants, 4(1).

Introduction

Topological integral

transforms

Hybrid

transforms

mixed classical + topological

Descriptors

- topological meaning
- interpretable
- well-suited to statistics
- ► complete
- + diversity of kernels
- + regularity

e.g. Euler-Fourier transform

Fourier analysis of topological changes

Consider $\xi : \mathbb{R}^n \to \mathbb{R}$ linear.

Def. (Pushforward) S compact subanalytic $\xi_* \mathbf{1}_S : \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{Z} \\ t \longmapsto \chi \left(\xi^{-1}(t) \cap S \right) \end{array}$

Def. (Pushforward) S compact subanalytic $\xi_* \mathbf{1}_S : \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{Z} \\ t \longmapsto \chi \left(\xi^{-1}(t) \cap S \right) \end{array}$

Def. Radon transform

$$\operatorname{B}[S]$$
 :

Thm. (Schapira [1]) $S \mapsto \mathcal{R}[S]$ is injective (up to a constant if n is even).

[2] (Curry, Mukherjee, Turner 2018) [4] (Ghrist, Levanger, Mai 2018)

Def. Euler characteristic transform (ECT) $\operatorname{ECT}[S]: \begin{array}{c} \mathbb{S}^{n-1} \times \mathbb{R} \longrightarrow \mathbb{Z} \\ (\xi, t) \longmapsto \operatorname{EC}_{\xi}[S](t) \end{array}$

Thm. (Curry, Mukherjee, Turner [2], Ghrist, Levanger, Mai [4]) $S \mapsto \text{ECT}[S]$ is injective.

Euler characteristic transform ^[2]

[2] (Curry, Mukherjee, Turner 2018)
[3] (Turner, Mukherjee, Boyer 2014)
[4] (Ghrist, Levanger, Mai 2018)

Ex. [10] Prediction of clinical outcomes in brain tumors

[10] Crawford, Monod, Chen, Mukherjee, Rabadán (2020) *Predicting Clinical Outcomes in Glioblastoma : An Application of Topological and Functional Data Analysis*, Journal of the American Statistical Association, 115 :531, 1139-1150

Def. (Hybrid transform) $\kappa : \mathbb{R} \to \mathbb{C}$ in L^1_{loc} and S compact subanalytic $\mathbb{R}^n \to \mathbb{C}$ $T_{\kappa}[S]: \qquad \xi \ \longmapsto \ \int_{\mathbb{R}} \kappa(t)\xi_* \mathbf{1}_S(t) \, \mathrm{d}t = \int_{\mathbb{R}} \kappa(t)\mathcal{R}[S](\xi,t) \, \mathrm{d}t$

Def. (Hybrid transform) $\kappa : \mathbb{R} \to \mathbb{C}$ in L^1_{loc} and S compact subanalytic

Def. (Hybrid transform) $\kappa : \mathbb{R} \to \mathbb{C}$ in L^1_{loc} and S compact subanalytic

$$\mathbb{R}^{n} \longrightarrow \mathbb{C}$$

$$\mathrm{T}_{\kappa}[S]: \qquad \xi \longmapsto \int_{\mathbb{R}} \kappa(t)\xi_{*}\mathbf{1}_{S}(t) \,\mathrm{d}t = \int_{\mathbb{R}} \kappa(t)\mathcal{R}[S](\xi,t) \,\mathrm{d}t$$

Ex. Euler-Fourier

Fourier analysis of copological changes

Ex. Euler-Laplace

Multi-parameter persistent magnitude generalizes persistent

magnitude [11]

[11] Govc, Hepworth (2021) Persistent magnitude. Journal of Pure and Applied Algebra, 225(3), 106517.

Def. (Hybrid transform) $\kappa : \mathbb{R} \to \mathbb{C}$ in L^1_{loc} and S compact subanalytic

$$\begin{array}{ll}
\mathbb{R}^{n} \longrightarrow \mathbb{C} \\
\mathbb{T}_{\kappa}[S]: & \xi \longmapsto \int_{\mathbb{R}} \kappa(t) \xi_{*} \mathbf{1}_{S}(t) \, \mathrm{d}t = \int_{\mathbb{R}} \kappa(t) \mathcal{R}[S](\xi, t) \, \mathrm{d}t
\end{array}$$

Euler-Fourier transform

- injectivity : on cstr. fns. coming from persistence
- regularity : if ${\cal S}$ is a polytopal complex, continuous, piecewise-smooth, bounded
- spectral info on topology of slices

Software

soon optimized in C++ and Python by Hugo Passe (ENS Lyon)

Toy example : piecewise linear curve in \mathbb{R}^2

Toy example : piecewise linear curve in \mathbb{R}^2

Toy example : piecewise linear curve in \mathbb{R}^2

Examples (2D)

S = retina vessels [8]

 $\chi(S \cap \xi^{-1}(t)) = \text{crossing number}$

Examples (2D)

Examples (3D)

S = sandy rock [7]

[7] Wonammadmoradi (2017) A Multiscale Sandy Microstructure, Digital Rocks Portal http://www.digitalrocksportal.org/projects/92

Examples (3D)

Conclusion

arXiv:2111.07829

Take-away : Fourier analysis of topological changes

Properties

- topological info
- well-suited to statistics
- interpretable
- continuous, piecewise-smooth (on polytopal complexes)

Conclusion

arXiv:2111.07829

Take-away : Fourier analysis of topological changes

Properties

- topological info
- well-suited to statistics
- interpretable
- continuous, piecewise-smooth (on polytopal complexes)

Thank you !

References

[1] Schapira (1995) *Tomography of constructible functions.* In International Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes (pp. 427-435). Springer, Berlin, Heidelberg.

[2] Curry, Mukherjee, Turner. (2018) How many directions determine a shape and other sufficiency results for two topological transforms. arXiv preprint arXiv :1805.09782.

[3] Turner, Mukherjee, Boyer (2014) *Persistent homology transform for modeling shapes and surfaces*. Information and Inference : A Journal of the IMA, 3(4), 310-344.

[4] Ghrist, Levanger, Mai (2018) *Persistent homology and Euler integral transforms*. Journal of Applied and Computational Topology, 2(1), 55-60.

[5] Ghrist, Robinson (2011) Euler-Bessel and Euler-Fourier transforms. Inverse problems, 27(12), 124006.

[6] Bultreys, De Boever (2020) Belgian Fieldstone, www.digitalrocksportal.org

[7] Mohammadmoradi (2017) *A Multiscale Sandy Microstructure*, Digital Rocks Portal http://www.digitalrocksportal.org/projects/92

[8] DRIVE : Digital Retinal Images for Vessel Extraction, https://drive.grand-challenge.org

[9] Wang, Zhong, Hua (2019) DeepOrganNet : on-the-fly reconstruction and visualization of 3D/4D lung models from single-view projections by deep deformation network. IEEE Transactions on Visualization and Computer Graphics, 26(1), 960-970.

[10] Crawford, Monod, Chen, Mukherjee, Rabadán (2020) *Predicting Clinical Outcomes in Glioblastoma : An Application of Topological and Functional Data Analysis*, Journal of the American Statistical Association, 115 :531, 1139-1150

[11] Govc, Hepworth (2021) Persistent magnitude. Journal of Pure and Applied Algebra, 225(3), 106517.

[12] Amézquita, Quigley, Ophelders, Landis, Koenig, Munch, Chitwood (2022) *Measuring hidden phenotype : Quantifying the shape of barley seeds using the Euler Characteristic Transform*. in silico Plants, 4(1).

Computations

Computations

Computations

- 1. Compute $\min \xi$ and $\max \xi$ on $Vert(P_i)$
- 2. Sum

$$\mathbf{\mathcal{F}}[\varphi] = \sum m_i \int_{\mathbb{R}} e^{-it} \mathbf{1}_{[\xi(p_i),\xi(q_i)]} \, \mathrm{d}t = i \sum m_i \left(e^{-i\xi(p_i)} - e^{-i\xi(q_i)} \right)$$

Toy example : square

Toy example : square minus a crack

