Corrigés des exercices Probabilités et statistiques

N'hésitez pas à m'envoyer un mail si vous avez des questions. 1

1 Lois de probabilités

Exercice 1. Ecriture ensembliste (*)

Soit Ω un univers fini et soient A, B et C trois évènements de Ω . Exprimer à l'aide d'opérations ensemblistes (union, intersection, complémentaire), les evènements suivants :

- 0. Exemple : L'évènement D = "A ne se réalise pas" s'exprime par la formule $^2 : D = \overline{A}$.
- 1. E ="seul A se réalise",
- 2. F = "A et B se réalisent mais pas C",
- 3. G = "les trois évènements se réalisent",
- 4. H = "au moins l'un des trois évènements se réalise",
- 5. I = "aucun des trois évènements ne se réalise",
- 6. J = "exactement deux des trois se réalisent".
- 7. K = "au plus l'un des trois évènements se réalise",

Solution de l'exercice 1.

- 1. $E = A \cap \overline{B} \cap \overline{C}$,
- 2. $F = A \cap B \cap \overline{C}$.
- 3. $G = A \cap B \cap C$,
- 4. $H = A \cup B \cup C$,
- 5. $I = \overline{A} \cap \overline{B} \cap \overline{C}$.
- 6. $J = (A \cap B \cap \overline{C}) \cup (A \cap \overline{B} \cap C) \cup (\overline{A} \cap B \cap C),$
- 7. Deux façons de le voir ici, qui donnent bien sûr le même résultat : "au plus un évènement se réalise" est égale à l'évènement K' = "aucun des trois ou exactement un se réalise" ou encore à l'évènement contraire de K'' = "au moins deux se réalisent". Dans le premier cas on trouve $K = K' = I \cup (A \cap \overline{B} \cap \overline{C}) \cup (\overline{A} \cap B \cap \overline{C}) \cup (\overline{A} \cap \overline{B} \cap C)$, car "aucun évènement ne se réalise" est le contraire de l'évènement H. Dans le second cas, on trouve $K = \overline{K''}$ où $K'' = J \cup (A \cap B \cap C)$.
- 1. vadim.lebovici@ens.fr
- 2. On rappelle que $\overline{A} = \Omega \setminus A$.

Exercice 2. Dé pipé (*)

On lance un dé à six faces pipé de sorte qu'il existe un coefficient $\alpha \in \mathbb{R}$ tel que la probabilité de faire un nombre n avec ce dé soit égale à $n\alpha$.

- 1. Proposer un univers modélisant cette expérience aléatoire.
- 2. Déterminer la valeur du paramètre α de la loi de probabilité \mathbb{P} décrite par l'énoncé.
- 3. Quelle est la probabilité d'obtenir un chiffre pair?

Solution de l'exercice 2.

- **1.** On considère l'univers fini $\Omega = \{1, 2, 3, 4, 5, 6\}$.
- **2.** Puisque \mathbb{P} est une loi de probabilité, on a :

$$1 = \mathbb{P}(\{1\}) + \mathbb{P}(\{2\}) + \mathbb{P}(\{3\}) + \mathbb{P}(\{4\}) + \mathbb{P}(\{5\}) + \mathbb{P}(\{6\})$$
$$= \alpha + 2\alpha + 3\alpha + 4\alpha + 5\alpha + 6\alpha$$
$$= 21\alpha,$$

d'où $\alpha = 1/21$.

3. La probabilité d'obtenir un chiffre pair vaut :

$$\mathbb{P}(\{2,4,6\}) = \mathbb{P}(\{2\}) + \mathbb{P}(\{4\}) + \mathbb{P}(\{6\})$$
$$= 2/21 + 4/21 + 6/21$$
$$= 12/21.$$

Exercice 3. Propriétés du cours (*)

Soit Ω un univers fini et soit \mathbb{P} une loi de probabilité sur Ω . Montrer que :

- 1. $\mathbb{P}(\emptyset) = 0$.
- 2. Soient $A \in \mathcal{P}(\Omega)$ et $B \in \mathcal{P}(\Omega)$.
 - (a) Si $A \subseteq B$, alors $\mathbb{P}(B \setminus A) = \mathbb{P}(B) \mathbb{P}(A)$. En particulier, $\mathbb{P}(A) \leq \mathbb{P}(B)$.
 - (b) $\mathbb{P}(\overline{A}) = 1 \mathbb{P}(A)$.
 - (c) $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$.
- 3. Pour tout $A \in \mathcal{P}(\Omega)$, on a $0 \leq \mathbb{P}(A) \leq 1$.

Solution de l'exercice 3.

Toutes les questions ont été corrigées en cours sauf la 2.(c). Pour montrer ce résultat, notons que 3 :

$$A \cup B = (A \setminus A \cap B) \cup (B \setminus A \cap B) \cup (A \cap B).$$

^{3.} Le montrer si vous n'en êtes pas convaincu·e·s.

De plus, comme $(A \setminus A \cap B) \cap (B \setminus A \cap B) = \emptyset$, on a par l'additivité de \mathbb{P} et la question 2.(a):

$$\begin{split} \mathbb{P}((A \setminus A \cap B) \cup (B \setminus A \cap B)) &= \mathbb{P}(A \setminus A \cap B) + \mathbb{P}(B \setminus A \cap B) \\ &= \mathbb{P}(A) - \mathbb{P}(A \cap B) + \mathbb{P}(B) - \mathbb{P}(A \cap B) \\ &= \mathbb{P}(A) + \mathbb{P}(B) - 2\mathbb{P}(A \cap B). \end{split}$$

De plus, $((A \setminus A \cap B) \cup (B \setminus A \cap B)) \cap (A \cap B) = \emptyset$, donc par additivité de \mathbb{P} , on a :

$$\mathbb{P}(A \cup B) = \mathbb{P}((A \setminus A \cap B) \cup (B \setminus A \cap B)) + \mathbb{P}(A \cap B)$$
$$= \mathbb{P}(A) + \mathbb{P}(B) - 2\mathbb{P}(A \cap B) + \mathbb{P}(A \cap B)$$
$$= \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B).$$

Exercice 4. Encadrement de la probabilité de l'intersection (*)

Soit Ω un univers fini, soit \mathbb{P} une loi de probabilité sur Ω et soient A et B deux évènements de Ω . Montrer que 4 :

$$\mathbb{P}(A) + P(B) - 1 \le \mathbb{P}(A \cap B) \le \min(\mathbb{P}(A), \mathbb{P}(B)).$$

Solution de l'exercice 4.

Pour l'inégalité de gauche, on sait que $\mathbb{P}(A \cup B) \leq 1$ (cf. exercice 3 question 3) et que :

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B),$$

par la question 2.(c) de l'exercice 3. Ainsi, on a que $\mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) \leq 1$, ou encore :

$$\mathbb{P}(A) + \mathbb{P}(B) - 1 \le \mathbb{P}(A \cap B).$$

Pour l'inégalité de droite, on sait que $A \cap B \subseteq A$ et $A \cap B \subseteq B$. Par la question 2.(a) de l'exercice 3, on a donc que $\mathbb{P}(A \cap B) \leq \mathbb{P}(A)$ et que $\mathbb{P}(A \cap B) \leq \mathbb{P}(B)$. D'où $\mathbb{P}(A \cap B) \leq \min(\mathbb{P}(A), \mathbb{P}(B))$.

2 Variables aléatoires

Dans toute cette section, on se fixe un univers fini Ω et une loi de probabilités \mathbb{P} sur Ω .

Exercice 5. Echauffements I (\star)

Soit X une variable aléatoire sur Ω d'univers image est $X(\Omega)=\{-2,-1,1,2\}$ et de probabilités données par :

$$\mathbb{P}(X=-2)=0,1$$
 $\mathbb{P}(X=-1)=0,35,$ $\mathbb{P}(X=2)=0,4$ $\mathbb{P}(X=1)=0,15.$

^{4.} Montrer que $a \leq \min(b,c)$ est équivalent à montrer que $a \leq b$ et $a \leq c$.

- 1. Quel est l'univers image de la variable aléatoire X^2 ?
- 2. La variable aléatoire X^2 suit-elle une loi uniforme?
- 3. Les variables X et X^2 sont-elles indépendantes?

Solution de l'exercice 5.

- 1. $X^2(\Omega) = \{1, 4\}.$
- **2.** Commençons par noter que ⁵ :

$${X^2 = 1} = {X = -1} \cup {X = 1}.$$

De même,

$${X^2 = 4} = {X = -2} \cup {X = 2}.$$

Comme $\{X = 1\} \cap \{X = -1\} = \emptyset$ et $\{X = 2\} \cap \{X = -2\} = \emptyset$ on peut calculer:

$$\mathbb{P}(X^2 = 1) = \mathbb{P}(\{X = -1\} \cup \{X = 1\}) = 0, 35 + 0, 15 = 0, 5,$$

$$\mathbb{P}(X^2 = 4) = \mathbb{P}(\{X = -2\} \cup \{X = 2\}) = 0, 4 + 0, 1 = 0, 5.$$

Ainsi, on a bien, pour tout $y \in X^2(\Omega)$, que $\mathbb{P}(X^2 = y) = \frac{1}{\#X^2(\Omega)}$, i.e. X^2 suit la loi uniforme.

3. Non, on $a \mathbb{P}(\{X=1\} \cap \{X^2=1\}) = \mathbb{P}(X=1) = 0, 15 \neq 0, 075 = \mathbb{P}(X=1) \cdot \mathbb{P}(X^2=1)$.

Exercice 6. Echauffements II (**)

Soient X et Y deux variables aléatoires indépendantes de même univers image $\{1, \ldots, n\}$ et suivant toutes deux la loi uniforme. Déterminer $\mathbb{P}(X = Y)$, avec une aide ⁶.

Solution de l'exercice 6.

Soit $k \in \{1, ..., n\}$. On peut facilement vérifier que :

$${X = Y} = ({X = 1} \cap {Y = 1}) \cup \dots \cup ({X = n} \cap {Y = n}).$$

D'où, l'on a:

$$\mathbb{P}(X = Y) = \mathbb{P}(\{X = 1\} \cap \{Y = 1\}) + \dots + \mathbb{P}(\{X = n\} \cap \{Y = n\}).$$

$$\{\omega \in \Omega \mid X(\omega)^2 = 1\} = \{\omega \in \Omega \mid X(\omega) = -1\} \cup \{\omega \in \Omega \mid X(\omega) = 1\},\$$

6. On admettra que l'additivité de \mathbb{P} s'étend aux familles finies d'évènements : si A_1, \ldots, A_m sont m évènements deux à deux incompatibles (i.e. $A_i \cap A_j = \emptyset$ pour tout $i, j \in \{1, \ldots, m\}$) alors $\mathbb{P}(A_1 \cup \cdots \cup A_m) = \mathbb{P}(A_1) + \cdots + \mathbb{P}(A_m)$.

^{5.} Cette égalité intuitive ne l'est peut-être pas encore pour vous. Pour celles et ceux qui n'en seraient pas convaincus, cela nécessite de vérifier l'égalité suivante par double inclusion :

De plus, pour tout $i \in \{1, ..., n\}$, on a

$$\mathbb{P}\Big(\{X=i\}\cap\{Y=i\}\Big)=\mathbb{P}(X=i)\cdot\mathbb{P}(Y=i)=\frac{1}{n}\cdot\frac{1}{n}=\frac{1}{n^2},$$

 $car\ X\ et\ Y\ sont\ indépendantes\ et\ suivent\ la\ loi\ uniforme.$ On peut donc remplacer dans la deuxième équation pour trouver :

$$\mathbb{P}(X = Y) = \frac{1}{n^2} + \dots + \frac{1}{n^2} = n \cdot \frac{1}{n^2} = \frac{1}{n},$$

car il y a n termes dans la somme.

Exercice 7. Petits calculs (\star)

On considère le même cadre que l'exercice 5.

- 1. Calculer l'espérance de X et de X^2 .
- 2. Calculer la variance et l'écart-type de X et de X^2 .

Solution de l'exercice 7.

1. On peut calculer:

$$\mathbb{E}[X] = -2 \times 0, 1 - 1 \times 0, 35 + 1 \times 0, 15 + 2 \times 0, 4 = 0, 4,$$

$$\mathbb{E}[X^2] = 1 \times 0, 5 + 4 \times 0, 5 = 2, 5.$$

2. On peut calculer :

$$\mathbb{E}[X^4] = 1 \times 0, 5 + 16 \times 0, 5 = 8, 5.$$

On peut alors calculer en utilisant la formule de König-Huygens :

$$\mathbb{V}(X) = \mathbb{E}\left[X^2\right] - \mathbb{E}\left[X\right]^2 = 2,34,$$

$$\mathbb{V}(X^2) = \mathbb{E}\left[X^4\right] - \mathbb{E}\left[X^2\right]^2 = 2,25.$$

Exercice 8. Formule de König-Huygens (*)

Soit X une VAR sur un univers fini Ω . Montrer que $\mathbb{V}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$.

Solution de l'exercice 8.

Il suffit d'utiliser la linéarité de l'espérance et de développer le carré.

$$\begin{split} \mathbb{V}\left(X\right) &= \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^{2}\right] = \mathbb{E}\left[X^{2} - 2 \cdot \mathbb{E}\left[X\right] \cdot X + \mathbb{E}\left[X\right]^{2}\right] \\ &= \mathbb{E}\left[X^{2}\right] - 2 \cdot \mathbb{E}\left[X\right] \cdot \mathbb{E}\left[X\right] + \mathbb{E}\left[\mathbb{E}\left[X\right]^{2}\right] \\ &= \mathbb{E}\left[X^{2}\right] - 2 \cdot \mathbb{E}\left[X\right] \cdot \mathbb{E}\left[X\right] + \mathbb{E}\left[X\right]^{2} \\ &= \mathbb{E}\left[X^{2}\right] - \mathbb{E}\left[X\right]^{2}. \end{split}$$

A la deuxième ligne, on utilise la linéarité de l'espérance sortir la somme de l'espérance et pour sortir $2 \cdot \mathbb{E}[X]$ de l'espérance du milieu. A la troisième ligne, on utilise le fait que, puisque $\mathbb{E}[X]^2$ est un nombre réel constant, $\mathbb{E}\left[\mathbb{E}[X]^2\right] = \mathbb{E}[X]^2$.

Exercice 9. Des variables de Bernoulli (*)

Soit $p \in \mathbb{R}$ tel que 0 et soit X une variable de Bernoulli de paramètre p.

- 1. On pose $Y=1-X^2$. Montrer que Y est une variable de Bernoulli et donner son paramètre.
- 2. Les variables X et Y sont-elles indépendantes?

Solution de l'exercice 9.

1. L'univers image de Y est $Y(\Omega) = \{0,1\}$. De plus, on peut calculer :

$${Y = 1} = {1 - X^2 = 1} = {X^2 = 0} = {X = 0},$$

d'où $\mathbb{P}(Y=1) = \mathbb{P}(X=0) = 1 - \mathbb{P}(X=1) = 1 - p$. La variable Y est donc une variable de Bernoulli de paramètre 1 - p.

2. Les variables X et Y ne sont pas indépendantes. En effet, on peut noter que $\{Y = 0\} \cap \{X = 1\} = \emptyset$ car tout $\omega \in \Omega$ tel que $\omega \in \{X = 1\}$, i.e. $X(\omega) = 1$ vérifiera que $Y(\omega) = 1 - X(\omega)^2 = 1 - 0^2 = 1$, et donc $Y(\omega) \neq 0$ i.e. $\omega \notin \{Y = 0\}$. D'où,

$$\mathbb{P}(X = 1, Y = 0) = 0 \neq p \times p = \mathbb{P}(X = 1) \times \mathbb{P}(Y = 0),$$

 $car p \neq 0$.

Exercice 10. Une convergence en probabilité (**)

Pour tout $n \in \mathbb{N}^*$, on considère une variable aléatoire réelle X_n centrée (i.e. telle que $\mathbb{E}[X_n] = 0$) sur Ω et telle que $\mathbb{V}(X_n) = 1/n$. Montrer que pour tout $\varepsilon > 0$, on a $\mathbb{P}(X_n^2 \ge \varepsilon) \xrightarrow[n \to +\infty]{} 0$.

Solution de l'exercice 10.

Soit $\varepsilon > 0$. Pour $n \in \mathbb{N}^*$, on a par inégalité de Markov appliquée à la variable positive X_n^2 ,

$$\mathbb{P}(X_n^2 \ge \varepsilon) \le \frac{\mathbb{E}\left[X_n^2\right]}{\varepsilon}.$$

De plus, on a par formule de König-Huygens,

$$\mathbb{V}(X_n) = \mathbb{E}\left[X_n^2\right] - \mathbb{E}\left[X_n\right]^2 = \mathbb{E}\left[X_n^2\right],$$

 $car \mathbb{E}[X_n] = 0$. Ainsi, en utilisant que $\mathbb{V}(X_n) = 1/n$, on a pour tout $n \in \mathbb{N}^*$,

$$\mathbb{P}(X_n^2 \ge \varepsilon) \le \frac{1}{n\varepsilon}.$$

En utilisant le fait que \mathbb{P} est positive pour minorer $\mathbb{P}(X_n^2 \ge \varepsilon)$ par 0, et le fait que $1/n\varepsilon \underset{n \to +\infty}{\longrightarrow} 0$ (par opérations sur les limites car $1/n \underset{n \to +\infty}{\longrightarrow} 0$), on a par le théorème d'encadrement des limites :

$$\mathbb{P}(X_n^2 \ge \varepsilon) \underset{n \to +\infty}{\longrightarrow} 0.$$