

Analyse topologique de données

Vadim Lebovici*

ΤD

Exercise 1 (Characterization of the convex hull). Let $x_0, \ldots, x_k \in \mathbb{R}^n$. Prove that:

$$\operatorname{Conv}(x_0,\ldots,x_k) = \left\{ \sum_{i=0}^k \lambda_i x_i : \lambda_i \ge 0 \text{ and } \sum_{i=0}^k \lambda_i = 1 \right\}.$$

Exercise 2 (Some combinatorics). How many faces does a k-dimensional simplex have?

Exercise 3 (Simplicial complexes). Which of the following collections of simplices are simplicial complexes? $\mathcal{K}_1 = \{0\}, \mathcal{K}_2 = \{1\}, \mathcal{K}_3 = \{0,1\}, \mathcal{K}_4 = \{0,1,[0,1]\}, \mathcal{K}_5 = \{0,[0,1]\}, \mathcal{K}_6 = \{1,[0,1]\}, \mathcal{K}_7$ given by the collection of vertices and edges of a triangle, \mathcal{K}_8 given by the collection of faces of a tetrahedra except its top dimensional face, \mathcal{K}_9 defined by the following figure:

where the white triangle is empty and the blue one if filled.

Exercise 4 (Subcomplexes). Let \mathcal{K} and \mathcal{K}' be two simplicial complexes. Prove the following assertions when they are true, or find a counterexample if not.

- 1. If $\mathcal{K}' \subset \mathcal{K}$, then $\mathcal{K} \setminus \mathcal{K}'$ is a subcomplex of \mathcal{K} .
- 2. The set $\mathcal{K} \cap K'$ is a simplicial complex.
- 3. The set $\mathcal{K} \cup \mathcal{K}'$ is a simplicial complex.

Exercise 5 (PL-morphisms). Show that the composition of two PL-morphisms is a PL-morphism.

^{*}lebovici@math.univ-paris13.fr

Exercise 6 (Homology computations). Let \Bbbk be a field. Compute the homology with coefficients in \Bbbk of the following simplicial complexes (see Exercise 3): \mathcal{K}_1 , \mathcal{K}_3 , \mathcal{K}_4 , \mathcal{K}_7 , \mathcal{K}_8 . Can you guess the homology of K_9 , and of the simplicial complexes \mathcal{K}_{10} and \mathcal{K}_{11} drawn in Figures 1a and 1b?

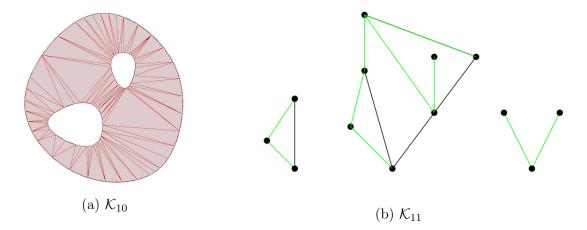


Figure 1: Two simplicial complexes

Exercise 7 (Euler characteristic). Let \mathcal{K} be a simplicial complex. The *Euler characteristic* of K, denoted by $\chi(\mathcal{K})$, is the integer:

$$\chi(\mathcal{K}) = \sum_{\sigma \in \mathcal{K}} (-1)^{\dim(\sigma)}.$$

1. Show that if \mathcal{K} and \mathcal{K}' are two simplicial complexes such that $\mathcal{K} \cup \mathcal{K}'$ is a simplicial complex, then:

 $\chi(\mathcal{K} \cup \mathcal{K}') = \chi(\mathcal{K}) + \chi(\mathcal{K}') - \chi(\mathcal{K} \cap \mathcal{K}').$

2. Prove the Euler-Poincaré formula:

$$\chi(\mathcal{K}) = \sum_{i \in \mathbb{Z}} (-1)^i \dim H_i(\mathcal{K}; \Bbbk).$$

3. Let \mathcal{K} be a 1-dimensional simplicial complex. Use the Euler-Poincaré formula to compute the Betti numbers of \mathcal{K} in terms of the number of vertices and edges of \mathcal{K} and of path connected components of $|\mathcal{K}|$.

Exercise 8 (Homology of compact surfaces¹). We assume known the fact that the homology of a surface does not depend on a choice of triangulation. Use the triangulations of compact surfaces seen in the algebraic topology class to compute their homology.

¹This exercise is harder.